Первый опытный образец мемристора именно как функционального элемента электрической цепи был создан в лабораториях американской компании Hewlett-Packard в апреле 2008 года группой учёных под руководством Стенли Уильямса.
Сегодня же в HP считают, что мемристоры начнут вытеснять с рынка флэш-память уже в будущем году, к 2014–2016 гг. они смогут заменить чипы оперативной памяти и жёсткие диски, а в 2020 году могут появиться и мемристорные компьютеры.
Познакомимся с принципом работы и способами физической реализации этого интересного элемента.
Для начала немножко теории. Электрическая цепь может описываться четырьмя физическими величинами: в каждой точке (сечении) – силой тока (I) и зарядом (Q), между двумя точками (поверхностями) – напряжением или разностью потенциалов (U) и магнитным потоком (Φ). Все эти четыре величины попарно соотносятся друг с другом, причём эти соотношения представлены в физических элементах электросхемы. Так, резистор (сопротивление) реализует взаимосвязь силы тока и напряжения, конденсатор (ёмкость) – напряжения и заряда, катушка индуктивности – магнитного потока и силы тока. Эти три пассивных элемента – резистор, конденсатор и катушка индуктивности – считаются базовыми в электротехнике, поскольку электрическую схему любой сложности теоретически можно свести к эквивалентной схеме, построенной исключительно из сопротивлений, ёмкостей и индуктивностей.
В 1971 году американский физик Леон О. Чуа из Калифорнийского университета в Беркли выдвинул гипотезу, согласно которой должен существовать четвёртый базовый элемент электросхемы, который описывал бы взаимосвязь магнитного потока с зарядом. Такой элемент невозможно составить из других базовых пассивных элементов, хотя уже тогда его можно было смоделировать с помощью комбинации активных элементов, например операционных усилителей.
Чуа назвал «недостающий» элемент мемзистором – от слов «резистор» и «memory», то есть «память». Это название описывает одну из характеристик мемзистора, так называемый гистерезис, «эффект памяти», означающий, что свойства этого элемента зависят от приложенной ранее силы. В данном случае сопротивление мемристора зависит от пропущенного через него заряда, что и позволяет использовать его в качестве ячейки памяти. Это свойство было названо мемрезистивностью (M), значение которой есть отношение изменения магнитного потока к изменению заряда. Величина M зависит от количества заряда, прошедшего через элемент, то есть от того, как долго через него протекал электрический ток.
Принципиальное отличие мемристора от большинства типов современной полупроводниковой памяти и его главное преимущество перед ними заключаются в том, что он не хранит свои свойства в виде заряда. Это означает, что ему не страшны утечки заряда, с которыми приходится бороться при переходе на микросхемы нанометровых масштабов, и что он полностью энергонезависим. Проще говоря, данные могут храниться в мемристоре до тех пор, пока существуют материалы, из которых он изготовлен. Для сравнения: флэш-память начитает терять записанную информацию уже после года хранения без доступа к электрическому току.
Реализовать на практике эту красивую теорию удалось лишь в 2008 году, когда появились подходящие материалы и технологии. Достижение группы учёных HP под руководством Стэнли Уильямса в действительности трудно переоценить: впервые со времён Фарадея удалось физически воспроизвести принципиально новый элемент электрических цепей! Кстати, одним из ведущих разработчиков группы Уильямса и соавтором научной статьи о мемристорах в журнале Nature стал наш соотечественник Дмитрий Струков.
Конструктивно мемристоры значительно проще флэш-памяти: они состоят из тонкой 50-нм плёнки, состоящей из двух слоёв – изолирующего диоксида титана и слоя, обеднённого кислородом. Плёнка расположена между двумя платиновыми 5-нм электродами. При подаче на электроды напряжения изменяется кристаллическая структура диоксида титана: благодаря диффузии кислорода его электрическое сопротивление увеличивается на несколько порядков (в тысячи раз). При этом после отключения тока изменения в ячейке сохраняются. Смена полярности подаваемого тока переключает состояние ячейки, причём, как утверждают в HP, число таких переключений не ограничено.
На практике мемристор может принимать не только обычные для обычных чипов памяти два положения – 0 или 1, но и любые значения в промежутке от нуля до единицы, так что такой переключатель способен работать как в цифровом (дискретном), так и в аналоговом режимах.
Чтобы эффективно использовать свойства мемристоров, необходимо включить их в состав электрической цепи с активными элементами. В начале 2009 года в Hewlett-Packard была разработана такая гибридная микросхема. Чип представляет собой матрицу из 42 проводников диаметром 40 нм, 21 из которых натянуты параллельно друг другу, а другие 21 – перпендикулярно им. Слой диоксида титана толщиной 20 нм расположен между взаимно перпендикулярными проводниками, и в этих местах формируются мемристоры. Вокруг этой «сетки» расположен массив полевых транзисторов, подключённых к выводам мемристоров.
В августе 2010 года HP и известный производитель микросхем памяти Hynix Semiconductor основали совместное предприятие, которое будет заниматься выпуском мемристорных чипов и их продвижением на рынке в качестве перспективной альтернативы флэш-памяти. Уильямс считает, что серийное производство может быть развёрнуто уже к 2013 году. По его оценкам, при той же цене, что и флэш-память, мемристорные чипы будут обладать как минимум вдвое большим объёмом, будут существенно быстрее её и в десять раз экономичнее.
Разумеется, помимо научных сотрудников Hewlett-Packard исследованиями мемристоров занимаются и другие коллективы учёных. К примеру, в американском Университете Райса разрабатывают такие элементы памяти не из диоксида титана, а из гораздо более дешёвого оксида кремния, который легко получить из обычного песка. Расчётная толщина слоя оксида кремния составляет от 5 до 20 нм, скорость переключения – не более 100 нс. В Университете Райса была также успешно решена задача многократной записи в ячейки памяти на основе мемристоров из оксида кремния.
В американском Национальном институте стандартов и технологии (NIST) была разработана технология изготовления гибких элементов памяти на основе мемристоров из диоксида титана. В качестве подложки был использован полимерный материал, а получившийся элемент сохраняет работоспособность после четырёх тысяч циклов изгиба.
В апреле 2010 года в HP объявили о существенном прогрессе в исследованиях мемристоров: в лабораториях компании разработаны образцы ячеек со стороной 3 нм и скоростью переключения около одной наносекунды. Кроме того, учёным удалось создать трёхмерный массив таких элементов, способный выполнять логические операции и работающий аналогично синапсам – «сигнальным линиям» между нейронными клетками в мозгу человека. Скорость передачи сигнала по синапсу зависит от времени активации нейронов: чем меньше временной промежуток между активацией, тем быстрее передаётся сигнал по синапсу. Точно так же работает и массив мемристоров: при подаче тока с промежутками в 20 мс сопротивление мемристора вдвое меньше, чем при 40-мс промежутках.
По словам Стэнли Уильямса, менее чем через три года 3D-массив мемристоров позволит размещать 20 Гбайт данных в объёме 1 см3, сравнимом с кусочком сахара. Если же использовать достаточное количество мемристоров, то теоретически возможно создать действующую модель мозга – и не просто с возможностью вычислений, но и с функцией самообучения.
Исследования в области искусственного интеллекта, а конкретнее по созданию искусственного мозга на базе мемристоров, ведутся также в Университете штата Мичиган под руководством Вея Лу. Здесь была построена модель мемристора на основе слоя из смеси серебра и кремния и вольфрамовых электродов, причём в ближайших планах учёных – создание больших схем, состоящих из тысяч таких элементов.
Уже изученные свойства мемристоров позволяют говорить о том, что на их основе можно создавать компьютеры принципиально новой архитектуры, по производительности значительно превышающие полупроводниковые. Современные компьютеры построены на базе архитектуры фон Неймана: и данные, и программы хранятся в памяти машины в двоичном коде, причём вычислительный модуль отделён от устройств хранения, а программы выполняются последовательно, одна за другой. Прогрессивная в середине прошлого столетия, такая архитектура сегодня уже не отвечает требованиям, предъявляемым к компьютерной технике: программы стали намного сложнее, а объёмы обрабатываемых данных выросли на порядки, если не в десятки порядков.
Компьютер на базе мемристоров может стать существенным шагом вперёд, поскольку он способен моделировать работу человеческого мозга, в котором нет какого-то единого центра сбора и обработки информации. Каждый блок получает, перерабатывает и передаёт в другие блоки, на мышцы, органы чувств свои массивы данных, ничтожные по сравнению со всем объёмом поступающей информации. По недавним подсчётам, чтобы построить модель коры мозга человека из современных компьютерных комплектующих, потребуется как минимум 150 000 процессоров и 144 Тбайта одной только оперативной памяти, причём речь не идёт даже об интеллекте уровня младенца.
В мемристорном компьютере параллельно и независимо друг от друга работают множество модулей, а возможность запоминать и оперировать неограниченным множеством значений от 0 до 1 означает, что исполняемые программы не ограничены двоичным кодом. Более того, станут в принципе ненужными отдельные аппаратные компоненты компьютера – процессоры, видеочипы, память и жёсткие диски; машина будет архитектурно однородным устройством, где одновременно будут храниться все данные и проводиться все операции с ними. Для апгрейда достаточно будет установить дополнительные мемристорные модули, а для ремонта – заменить вышедшие из строя.
Мемристорный компьютер не надо будет «загружать»: сразу после включения он будет готов продолжить работу, причём с того самого места, на котором она была прервана. По сравнению с современной техникой, энергопотребление мемристорных машин будет ничтожным, а вычислительная мощь просто гигантской.
Учитывая, что до серийного производства мемристоров остался буквально один шаг, очень может быть, что именно мемристорный компьютер станет промежуточной ступенью на пути к квантовому компьютеру.